Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The configuration that an instructor enters into an algorithmic team formation tool determines how students are grouped into teams, impacting their learning experiences. One way to decide the configuration is to solicit input from the students. Prior work has investigated the criteria students prefer for team formation, but has not studied how students prioritize the criteria or to what degree students agree with each other. This paper describes a workflow for gathering student preferences for how to weight the criteria entered into a team formation tool, and presents the results of a study in which the workflow was implemented in four semesters of the same project-based design course. In the most recent semester, the workflow was supplemented with an online peer discussion to learn about students' rationale for their selections. Our results show that students want to be grouped with other students who share the same course commitment and compatible schedules the most. Students prioritize demographic attributes next, and then task skills such as programming needed for the project work. We found these outcomes to be consistent in each instance of the course. Instructors can use our results to guide team formation in their own project-based design courses and replicate our workflow to gather student preferences for team formation in any course.more » « less
-
Team formation tools assume instructors should configure the criteria for creating teams, precluding students from participating in a process affecting their learning experience. We propose LIFT, a novel learner-centered workflow where students propose, vote for, and weigh the criteria used as inputs to the team formation algorithm. We conducted an experiment (N=289) comparing LIFT to the usual instructor-led process, and interviewed participants to evaluate their perceptions of LIFT and its outcomes. Learners proposed novel criteria not included in existing algorithmic tools, such as organizational style. They avoided criteria like gender and GPA that instructors frequently select, and preferred those promoting efficient collaboration. LIFT led to team outcomes comparable to those achieved by the instructor-led approach, and teams valued having control of the team formation process. We provide instructors and designers with a workflow and evidence supporting giving learners control of the algorithmic process used for grouping them into teams.more » « less
-
High-performance computing systems are shifting away from traditional interconnect topologies to exploit new technologies and to reduce interconnect power consumption. The Dragonfly topology is one promising candidate for new systems, with several variations already in production. It is hierarchical, with local links forming groups and global links joining the groups. At each level, the interconnect is a clique, with a link between each pair of switches in a group and a link between each pair of groups. This paper shows that the intergroup links can be made in meaningfully different ways. We evaluate three previously- proposed approaches for link organization (called global link arrangements) in two ways. First, we use bisection bandwidth, an important and commonly-used measure of the potential for communication bottlenecks. We show that the global link arrangements often give bisection bandwidths differing by 10s of percent, with the specific separation varying based on the relative bandwidths of local and global links. For the link band- widths used in a current Dragonfly implementation, it is 33%. Second, we show that the choice of global link arrangement can greatly impact the regularity of task mappings for nearest neighbor stencil communication patterns, an important pattern in scientific applications.more » « less
An official website of the United States government
